
Memory allocation

C functions malloc(), calloc(), realloc() and free() are applicable in C++. But when we

are working with objects, they are useless.

C++ unary operator new allocates memory:

pointer = new type[number of elements];

If the number of elements is 1, write just:

pointer = new type;

Examples:

double *pd = new double; // 8 bytes

double *pdm = new double[10]; // 10 * 8 bytes

double **ppdm = new double *[10]; // 10 pointers to doubles

To release the allocated memory use unary operator delete:

delete pointer;

Example:

delete ppdm;

You may have heard that if the memory is allocated for an array (i.e. the new expression

contains brackets), then for releasing operator delete[] and not delete must be used. The

truth is that if the members of array are not objects then operator delete is perfectly

applicable. About delete[] we'll discuss in the next chapter.

Unicode in C++ (1)

ASCII : one byte per character, max 256 different characters (0…255).

Unicode: international standard, each character has its own unique code point marked

as U + xxxx (xxxx is a hexadecimal number).

The latest version 10.0 contains 136,765 characters including historic scripts (for

example, the Egyptian hieroglyphs) and multiple symbol sets. Max 1,114,112

characters are possible. See https://unicode-table.com/en/

Unicode is implemented by different encodings: UCS-2, UTF-16, UTF-32, UTF-8.

UCS - Universal Character Set, UTF - Unicode Transformation Format.

UCS-2: 2 bytes per character. The first 256 characters match the ASCII codes. Max

65,536 bytes.

UTF-16 (Windows, Java): 2 or 4 bytes per character. Mostly 2 bytes as in UCS-2. If the

contents of two-byte field is from interval [0xD800 : 0xD8FF], the code occupies also

the next two bytes. The four-byte codes (called as surrogates) are met very seldom.

UTF-32: 4 bytes per character.

UTF-8 (web, Unix, Linux): 1, 2, 3 or 4 bytes per character. If the highest bit of the byte

is 0, the code occupies 1 byte, otherwise we have to check the next byte. If the highest

bit of the second byte is 0, the code occupies 2 bytes and so on.

https://unicode-table.com/en/

Unicode in C++ (2)

C++ has new fundamental type: wchar_t (wide character). The standard does not state how

many bytes a wchar_t variable should occupy and which encoding system must be used.

Character constants:

char c = 'A'; // one byte

wchar_t wc = L'A'; // in Windows 2 bytes

String constants:

const char *pc = "ABC"; // 3 bytes + 1 byte for terminating 0

const wchar_t *pwc = L"ABC"; // in Windows 6 bytes + 2 bytes for terminating 0-s

String manipulation (1)

The complete list of string manipulation functions implemented in Visual Studio is on

https://docs.microsoft.com/en-us/cpp/c-runtime-library/string-manipulation-crt?view=vs-2017.

The most frequently used:

Task ASCII Unicode

String length strlen wcslen

Non-secure copy strcpy wcscpy

Secure copy strcpy_s wcscpy_s

Comparision strcmp wcscmp

Find character strchr wcschr

Find substring strstr wcsstr

Non-secure append strcat wcscat

Secure append strcat_s wcscat_s

Printing printf wprintf

https://docs.microsoft.com/en-us/cpp/c-runtime-library/string-manipulation-crt?view=vs-2017

String manipulation (2)

In secure copy and append functions we have to present the length of output buffer:

char *pBuf = new char[10];

strcpy(pBuf, "Hello");

strcpy_s(pBuf, 10, "Hello");

wchar_t *pWideBuf = new wchar_t[10]; // actually 20 bytes

wcscpy_s(pWideBuf, 10, L"Hello");

// not 20, the length presents the number of units, not the number of bytes

// write the exact number, otherwise you may corrupt your memory

In Visual Studio calls to non-secure functions are handled as errors in code. However,

if you still prefer the old-style non-secure functions, open the Visual Studio Properties

window and add _CRT_SECURE_NO_WARNINGS constant to preprocessor

definitions. Or write

#pragma warning(disable: 4996)

at the beginning of your *.cpp file.

String manipulation (3)

In Windows documentation we may instead of char and wchar_t we may meet TCHAR.

For example:

TCHAR c = _T('A'), *p1 = new TCHAR[100], *p2 = _T("string");

_T is a macro defined in file tchar.h. There are also macros like _tcscpy (replaces strcpy

and wcscpy), _tcscmp, _tcslen, _tprintf, etc. Examples:

_tcscpy(Buf, _T("Hello"));

_tprintf(_T("%d\n"), _tcslen(Buf));

All those macros are defined in the following way:

#ifdef _UNICODE

#define _tcslen wcslen

typedef wchar_t TCHAR

..

#else

#define _tcslen strlen

typedef char TCHAR

...

#endif

Windows data types

typedef char CHAR;

typedef unsigned char BYTE;

typedef int INT;

typedef int BOOL;

typedef unsigned int UINT;

typedef short int SHORT;

typedef unsigned short int WORD;

typedef long int LONG;

typedef unsigned long int DWORD;

typedef unsigned long int * LPDWORD

typedef const wchar_t * LPCTSTR // #ifdef _UNICODE

typedef const char * LPCTSTR // #ifndef _UNICODE

typedef void * PVOID

#define FALSE 0

#define TRUE 1

Those types are used throughout the Windows documentation

Scope resolution operator

int iii; // global

void fun()

{

int iii; // local in fun()

iii = 5; // to use the global iii write ::iii = 5

while (1)

{

int iii; // local in while block

iii = 0; // to use the global iii write ::(::iii) = 0

// to use the local iii write ::iii = 0

………….

}

iii = 10; // to use the global iii write ::iii = 10

……..

}

Default values for arguments

void fun1(double, double, int = 0); // prototype specifies the default values

void fun1(double d1, double d2, int ii) // definition

{

……………………………………..

}

fun1(5.0, 6.0, 1); // call to fun1(), d1 = 5.0, d2 = 6.0, ii = 1

fun1(5.0, 6.0); // call to fun1(), d1 = 5.0, d2 = 6.0, ii = 0

void fun2(double = 0, double = 0, int = 0); // prototype

void fun2(double d1, double d2, int ii) // definition

{

……………………………………..

}

fun2(); // call to fun2(), d1 = 0, d2 = 0, ii = 0

fun2(5.0); // call to fun2(), d1 = 5.0, d2 = 0, ii = 0

fun2(5.0, 6.0); // call to fun2(), d1 = 5.0, d2 = 6.0, ii = 0

fun2(5.0, 6.0, 1); // call to fun2(), d1 = 5.0, d2 = 6.0, ii = 1

void fun(double, double = 0, int); // error, arguments with default values must be at

// the end of list

Function overloading

In C++ several function may have the same name but only if their number of parameters

and / or types of parameters are different. Example:

void fun(int, int); // 1

void fun(double, double); // 2

void fun(); // 3

The compiler determines which function to call from the set of actual parameters (so

called overload resolution). Example:

fun(5, 6); // 1

fun(5.0, 6.0); // 2

fun(); // 3

fun(5, 6.0); // error, the compiler cannot select between functions

Do not forget, that in C++ a constant containing decimal point is of type double. To get

type float use suffix F (for example, 123.4F). To get type long double use suffix L (for

example, 123.4L). In case of integers suffix U sets the type to unsigned int, L to long int,

LU to unsigned long int, LL to long long int, LLU to unsigned long long int. The suffix

may be in lowercase as well as in uppercase.

Inline functions and macros (1)

If a function is defined as inline, the compiler may instead of generating a separate block

of code simply directly insert the function body into the body of calling function. This is

sensible in case of very short functions because the organizing of call, transfer the

parameters and return back to the previous location needs a lot of machine commands –

often more than the body of called function itself.

Example:

double square(double); // prototype

inline double square(double d) // definition

{

return d *d;

}

In case of call

double x = square(y); // may be compiled also as x = y * y;

Keyword inline is just a recommendation: the compiler may use inlining but may also

ignore our wish.

Visual Studio inlines short function bodies automatically, even if they are not defined

with keyword inline.

Inline functions and macros (2)

Inline functions may be replaced by preprocessor functions called macros.

Example:

#define SQUARE(a) (a) * (a)

In code:

double x = SQUARE(y); // the preprocessor replaces this statement with x = (y) * (y)

In calls to macro the preprocessor first replaces the formal parameter (here a) with actual

parameter (here y) and then replaces the complete expression.

Remark that the parenthesis in the body of macro are absolutely necessary:

double x = SQUARE(y + 1); // we get x = (y + 1) * (y + 1)

But if we define the macro as

#define SQUARE(a) a * a

we get x = y +1 * y + 1 or actually we get x = 2 * y + 1

References (1)
A reference is an alias for another variable. Below, ri is the alias of i:

int i, *pi = &i, &ri = i;

All the following expressions do the same: write value 10 to the four-byte field having

now two names: i and ri:

i = 10;

*pi = 10;

ri = 10;

A reference must be initialized when created. It is not possible to force a reference to

refer to another target.

int i, *pi, &ri; // error

Usage example:

void swap(int &rx, int &ry) // the prototype is void swap(int &, int &);

{

int z = rx; rx = ry; ry = z;

}

Instead of call by value here we call by reference:

int a = 5, b = 6;

swap(a, b);

Actually, swap works with a and b, temporarily named also as rx and ry.

References (2)
Alternative solution:

void swap(int *px, int *py) // the prototype is void swap(int *, int *);

{

int z = *px; *px = *py; *py = z;

}

Call by value (pointers to a and b are calculated and assigned to px an py):

int a = 5, b = 6;

swap(&a, &b);

swap accesses a and b undirectly, using pointers px and py.

Example about reference as return value:

int &SetValue(int *p, int i) // the prototype is int& SetValue(int *, int);

{

return *(p + i);

}

int Buf[] = { 1, 2, 3, 4, 5, 6 };

SetValue(Buf, 5) = 16; // Buf is now { 1, 2, 3, 4, 5, 16 }

Reference as return value means that the memory field specified by return statement

(here Buf[5]) gets a temporary alternative name (not shown to us). And to this memory

field a new value (here 16) is assigned.

References (3)
Lvalue (locator value or left value) is a an object that has address, i.e. it occupies a memory

field and this field can be identified by its name or by pointer.

double d = exp(5); // d is lvalue

d + 1 = exp(5); // error, the expression on the left side does not specify an lvalue

In assignments the left operand must be an lvalue. A reference may also refer only to an

lvalue.

Rvalue is an expression that does not represent an object occupying a memory field that can

be identified. In other words, if an expression does not specify an lvalue, then it specifies an

rvalue. Remark that constants are also rvalues.

A reference as an alternative name for a memory field that can be identified is also an

lvalue. Therefore expression SetValue(Buf, 5) = 16; is correct: from SetValue we get a

reference and the assignment is allowed.

int &SetValue(int *p, int i)

{

// return 5; error – constant is an rvalue, reference to it does not exist

// return *(p + i) +1; error – the expression does not specify an lvalue

return *(p + i);

}

Exceptions (1)
Exceptions are mechanism for a section of code to notify another section of code about an

error or other abnormal situation due to it the normal continuation of program run is not

possible. The section of code that encounters the problem throws the exception and the

section that has to handle the problem catches the exception. The both sections may or may

not be parts of the same function.

Suppose we have the following situation:

double x;

……………… // in some way compute value of x

if (x >= 0) {

…………… // OK, continue

}

else {

……………… // cannot continue, we have to inform the function that called our function

}

Possible solutions:

• Our function returns error code or simply 1 in case of success and 0 in case of failure.

• One of arguments of our function is the pointer to error code or reference to error code.

• Our function throws an exception

Exceptions (2)
int fun(…….)

{

double x;

……………… // in some way compute value of x

if (x >= 0)

{

…………… // OK, continue

return 1;

}

else

{

return 0; // cannot continue, we have to inform the function that called our function

}

}

Usage:

if (!fun(....))

{

printf("Error\n");

return;

}

Exceptions (3)
double fun(……., int *pError) {

double x;

……………… // in some way compute value of x

if (x >= 0) {

…………… // OK, continue

*pError = 0; // no errors

return result;

}

else {

*pError = NEGATIVE_NUMBER; // error code defined somewhere in *.h

return 0; // or any other senseless value

}

}

Usage:

int error_code;

double result = fun(……., &error_code);

if (error_code) {

printf("Error %d\n", error_code);

return;

}

Exceptions (4)
double fun(…….) {

double x;

……………… // in some way compute value of x

if (x <0) {

throw NEGATIVE_NUMBER; // our function exits here

}

…………… // OK, continue

return result;

}

Usage:

try { // try block contains code that may throw exceptions

double result = fun(…….);

}

catch (int error_code) { // catch block contains code that processes exceptions

printf("Error %d\n", error_code);

return;

}

…………………….. // if the exception was not thrown, the catch block is ignored

In C++ the exception may be an integer, string presenting the error message, pointer, etc.

Exceptions (5)
Suppose that fun1() calls fun2() and fun2() calls fun3(). Suppose also that fun3() throws

exception but its call in fun2() is not enclosed into try-catch block. In that case the exception

will be rethrown from fun2() to fun1(). If in fun1() the call to fun2() is enclosed into try-

catch block, the catch in fun1() handles it. If not, the exception will be rethrown to function

that has called fun1(). Thus the exception moves on by the call chain higher and higher. If

the exception has reached main() and the main() is also not able to process it, the program

crashes.

A function may throw several exceptions of different types, for example:

double fun(double x) {

double y;

……………… // in some way computes value of y

if (y <0)

throw "Negative numbers"; // our function exits here

int n;

………...... // in some way computes value of n

if (n > 1024)

throw n; // our function exits here

……………

return result;

}

In that case we need several catch blocks.

Exceptions (6)

try {

double result = fun(123.456);

}

catch (const char *pMessage) {

printf("%s\n", pMessage);

return;

}

catch (int wrong_value) {

printf("Too long array %d\n", wrong_value);

return;

}

Block

catch(…) // three points instead of argument

{

…………………………… // processing

}

handles any exceptions. If there are several catch blocks, the universal catch must be the

last.

	Slide 1: Memory allocation
	Slide 2: Unicode in C++ (1)
	Slide 3: Unicode in C++ (2)
	Slide 4: String manipulation (1)
	Slide 5: String manipulation (2)
	Slide 6: String manipulation (3)
	Slide 7: Windows data types
	Slide 8: Scope resolution operator
	Slide 9: Default values for arguments
	Slide 10: Function overloading
	Slide 11: Inline functions and macros (1)
	Slide 12: Inline functions and macros (2)
	Slide 13: References (1)
	Slide 14: References (2)
	Slide 15: References (3)
	Slide 16: Exceptions (1)
	Slide 17: Exceptions (2)
	Slide 18: Exceptions (3)
	Slide 19: Exceptions (4)
	Slide 20: Exceptions (5)
	Slide 21: Exceptions (6)

